2.3 bookwork

Matching: Match the postulate with the diagram and the definition.

Matching: Match the postulate with the diagram and the definition.						
Postulate	Diagram (may be used more than once)	Definition				
&1. Two Point Postulate	a.	f. If two planes intersect, then their				
		intersection is a line.				
&2. Line-Point Postulate	r _m	g. A line contains at least two points				
&3. Line Intersection Postulate	b.	h. Through any three noncollinear points, there exists exactly one plane				
&4. Two Point Postulate	c.	i. Through any two points, there exists exactly one line.				
&5. Point-Plane Postulate	d.	j. If two planes intersect, then their intersection is a line.				
&6. Point-Line Postulate	$D_{\bullet} F_{\bullet}$	k. A plane contains at least three noncollinear points.				
&7. Plane intersection Postulate	e.	m. If two lines intersect, then their intersection is exactly one point.				
n 87						

p. 87

2.	
3.	4.
5.	6.
7.	8.

9.	10.	11.

13.	14.	15.	1	L6.		
17.	18.	19.	2	20.		
21.		22.	22.			
23.						
24.						
28. a. the condition	al statement $p o q$	1				
28. b. the converse	q o p					
the inverse $\sim p \rightarrow \sim$	· q					
the contrapositive ~	$\forall q \rightarrow \sim p$					
32.						
p. 120						
1. a.						
b.						
C.						
d.						
e.						
Review 2.1 complete	each statement us	sing the given ansv	ver bank.			
A. conditional	B. $p \rightarrow q$	C. inverse	D. biconditional	$E. q \rightarrow p$		
F. hypothesis	G. contrapositive	H. postulate	I. conclusion	J. negation		
1. A conditional stat the	ement, symbolized	by $p \rightarrow q$, can be v	vritten as an "if-then"	statement in which p is		
	ement, symbolized	by $p \rightarrow q$, can be v	vritten as an "if-then"	statement in which q is		
3. A conditional stat	ement of "If p, then	q" is expressed sy	mbolically as			
4. A conditional statement that is expressed as "If q, then p" is called the						
			hlete," the following se called a(n)			
6. A statement is a statement that contains the phrase "if and only if."						

7. If both p and q of the converse are negated, it is called a ___