\qquad

Matching: Match the postulate with the diagram and the definition.

Postulate	Diagram (may be used more than once)	Definition
\& \qquad 1. Two Point Postulate	a.	f. If two planes intersect, then their intersection is a line.
\qquad 2. Line-Point Postulate		g. A line contains at least two points
_ \& __3. Line Intersection Postulate	$\sigma_{B}^{\prime l}$	h. Through any three noncollinear points, there exists exactly one plane
_ \&__4. Two Point Postulate		i. Through any two points, there exists exactly one line.
\qquad \qquad 5. Point-Plane Postulate		j. If two planes intersect, then their intersection is a line.
_ \&__6. Point-Line Postulate		k. A plane contains at least three noncollinear points.
__ \& __7. Plane intersection Postulate		m . If two lines intersect, then their intersection is exactly one point.

p. 87

2.	4.
3.	6.
5.	8.
7.	

9.	10.	11.

13.	14.	15.	16.
17.	18.	19.	20.

21.	22.
23.	
24.	
28. a. the conditional statement $p \rightarrow q$	
the inverse $\sim p \rightarrow \sim q$	
28. b. the converse $q \rightarrow p$	
the contrapositive $\sim q \rightarrow \sim p$	
32.	
p. 120	
1. a.	
b.	
c.	
d.	
e.	

Review 2.1 complete each statement using the given answer bank.

A. conditional	B. $p \rightarrow q$	C. inverse	D. biconditional	E. $q \rightarrow p$
F. hypothesis	G. contrapositive	H. postulate	I. conclusion	J. negation

1. A conditional statement, symbolized by $\mathrm{p} \rightarrow \mathrm{q}$, can be written as an "if-then" statement in which p is the \qquad .
2. A conditional statement, symbolized by $\mathrm{p} \rightarrow \mathrm{q}$, can be written as an "if-then" statement in which q is the \qquad .
3. A conditional statement of "If p, then q " is expressed symbolically as \qquad .
4. A conditional statement that is expressed as "If q, then p " is called the \qquad .
5. If $\mathrm{p}=$ "you are a baseball player" and $\mathrm{q}=$ "you are an athlete," the following statement "If you are not a baseball player, then you are not an athlete" would be called a(n) \qquad .
6. A \qquad statement is a statement that contains the phrase "if and only if."
7. If both p and q of the converse are negated, it is called a \qquad .
