Section 4.8 Functions and Relations

Relation
A set of ordered pairs $\{1,2,3, \ldots \ldots\}$

Function A rule that established a relationship between two quantities; input/output. For each input there is one output.

Function Notation
$f(x)=\ldots \ldots$..... the value of f at x, x is the input $g(t)=.$.

$$
\mathrm{h}(\mathrm{~s})=\ldots . .
$$

etc....

$$
f(x)=x+2
$$

EXAMPLES

1. Decide whether the relation is a function. If so, give the domain and the range.

Input Output

Not
a function

$$
\begin{array}{ll}
\text { yes } & P=\{5,6,7,8\} \\
R=\{L, 3,5,7 \xi & R=\{2,3,78\}
\end{array}
$$

*** Vertical Line Test for Functions
A relation is a function of the horizontal-axis variable if and only if no vertical line passes through two or more points on the graph.

2. Evaluate the function for the given value of the variable,

$$
\begin{aligned}
& \text { a. } f(x)=7-3 x \text { when } x=4 \\
& f(4)=7-3(4) \\
& f(4)=7-12 \\
& f(4)=-5
\end{aligned}
$$

$$
\text { b. } h(x)=10 x+3 \text { when } x=-2
$$

$$
\begin{aligned}
& (x)=10 x+3 \text { when } x=-2(-2)+3 \\
& h(-2)=10(-2)
\end{aligned}
$$

$$
h(-2)=-20+3
$$

3. Graph $f(x)=5 x-4$.

4. Find the slope of the graph of the linear function, f

$$
\begin{array}{ll}
\text { dd the slope of the graph of the linear function, f. } & \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=m \\
\begin{array}{lll}
f(6)=-1 \text { and } f(3)=-8
\end{array} & \begin{array}{ll}
y_{1}=-1 & y_{2}=-8
\end{array} \\
x_{1}=6 \quad x_{2}=3 & m=\frac{-8-1)}{3}=-\frac{7}{3}
\end{array}
$$

