## A. Vocabulary

Match the vocabulary term with its definition.
$\qquad$ Point $\qquad$ Vertex
$\qquad$ Polygon $\qquad$ Line
$\qquad$ __ Adjacent
__ Sides $\qquad$ Plane
$\qquad$ Postulate $\qquad$ Distance
$\qquad$ Collinear $\qquad$
$\qquad$ Opposite Rays $\qquad$ Theorem
$\qquad$ Vertical angles $\qquad$ Ray
$\qquad$ Coplanar __Supplementary _ Linear Pair $\qquad$ Segment
$\qquad$ Complementary
A. A set of points with two rays and a common endpoint.
B. A location with no size or shape. Has no dimension and is notated with a dot.
C. Has one dimension. It is represented with two arrowheads, and extends in both directions with no end.
D. Has two dimensions. It is represented by a shape that looks like a wall or a floor, but extends without end.
E. Points on the same line.
F. Points on the same plane.
G. The common endpoint of an angle.
H. Part of a line. Consists of two endpoints and all the points between.
I. Part of a line. Consists of one endpoint and represented with an arrow in the opposite direction with no end.
J. Two rays that have a common endpoint and form a straight line.
K. A rule accepted without proof. Also, known as an axiom.
L. A rule that can be proven.
M. The absolute value of the difference between two coordinates.
N. A point that divides a segment into two congruent segments
O. A closed plane figure with three or more sides
P. The rays of an angle.
Q. Two angles that add to $90^{\circ}$
R. Two angles that add to $180^{\circ}$
S. Two angles that share a common endpoint and a common side.
T. Two adjacent angles that form supplementary angles.
U. Two angles in which the sides form opposite rays.
B. Section 1.1


| 1. Another name for line z. | 2. Three noncoplanar planar <br> points on plane K. | 3. A pair of opposite rays on <br> line p. |
| :--- | :--- | :--- |
| 4. A is collinear with which <br> two other points? | 5. Plane K and Plane L <br> intersect at _ ? | 6. State two segments on plane <br> L. |


| C. Section 1.1 |  |  |
| :---: | :---: | :---: |
| State a real-world example of each of the following. |  |  |
| 1. a point | 2. a line | 3. a plane |

Draw a sketch of each of the following.
4. 3 noncollinear points: $R, S$, and $T$ in Plane $U$
5. Plane A and Plane B not intersecting.

State sometimes, always, or never for each of the following statements.

| 6. Two perpendicular lines intersect at exactly <br> one point | 7. Two planes that intersect share an infinite <br> amount of points |
| :--- | :--- |
| 8. Two planes contain the same point | 9. Two planes that intersect share exactly one <br> point. |

## D. 1.2 and 1.3 Segment Addition Postulate.

## Find the measure of the missing segment.



## Write and solve an equation to find the length of each segment.

3. B is between A and $\mathrm{C} . \mathrm{AB}=\mathrm{x} \quad \mathrm{BC}=2 \mathrm{x}+1$ $\mathrm{AC}=19$ Find AB and BC .
a. Write an equation to solve for x .

b. Solve for x .
c. Find AB and BC .
4. $\mathrm{AB}=3 \mathrm{x}-4, \mathrm{AC}=40, \mathrm{AB}=\mathrm{BC}$
a. Write an equation to solve for x .
b. Solve for x .
c. Find AB and BC

## E. 1.3 and 1.4 Midpoint and Distance

## Distance formula:

1. Find the midpoint of $\overline{S T}$ and plot the midpoint, M. on the coordinate plane.

2. Find the distance of $\overline{M N}$. Write the exact and approximate value to the nearest tenth.


## Midpoint formula:

2. If Q is the midpoint of $\overline{Q R}$, find the coordinates of R if $\mathrm{P}(7,-17)$ and $\mathrm{Q}(-2,3)$.
3. Find the perimeter and area of the $\angle G H J$.
a. $\mathrm{GH}=$
$\mathrm{JG}=$
$\mathrm{HJ}=$
b. Perimeter $=$
c. Area $=$

F. 1.4 Polygons

Determine if the polygon is convex or concave. Then, classify the polygon by the number of sides.

| 1. | Circle: Convex or Concave | Circle: Convex or Concave |
| :--- | :--- | :--- |
| Circle: Convex or Concave |  |  |
| Classify: | Classify: |  |

Draw a sketch of each polygon.

| 4. Convex Octagon | 5. Concave nonagon | 6. Convex regular <br> quadrilateral. |
| :--- | :--- | :--- |
|  |  |  |

## G. 1.5 Angles

## Find and classify each angle.

1. 



Angle Measure:
Classify: $\qquad$
2.


Angle Measure: $\qquad$ Classify: $\qquad$

Use the given protractor to draw a measure for the given angle.

H. 1.5 Angles

Find the measure(s) of the missing angle.

| 1. $m \angle 4=73^{\circ}$ $m \angle 2=m \angle 3$ $m \angle 2+m \angle 3=m \angle 4$ <br> Find $m \angle 2=$ | 2. Given $m \angle A D C=118^{\circ}$ Find the value of x . |
| :---: | :---: |
| 3. Find $m \angle t=$ <br> Find $m \angle u=$ | 4. Find $m \angle f=$ <br> Find $m \angle e=$ <br> Find $m \angle d=$ |
| 5. Find $m \angle y=\quad$ Find $m \angle z=$ |  |

Chapter 1 Review Booklet
Name:
I. 1.6 Angle pair relationships

1. Find the measure of $\angle x$
2. Name a pair of nonadjacent complementary angles
3. Name a pair of adjacent supplementary angles.
4. Name a pair of vertical angles.
5. Are $\angle B F D$ and $\angle A F E$ vertical angles.

6. Name two angles that form a linear pair.

Find the measure of x . Then, find the measure of all the angles.
7. $\angle M V A$ and $\angle R V A$ are complimentary angles.
a. Find value of x .
b. $m \angle M V A=$
c. $m \angle R V A=$

8. $\angle 1$ and $\angle 2$ are supplementary. $\angle 1=(4 \mathrm{x}-5)^{\circ}, \angle 2=\mathrm{x}^{0}$ Draw a sketch of the figure and find the value of x and then find the measure of each angle.
a. Find value of $x$.
b. $m \angle 1=$
c. $m \angle 2=$

## J. More 1.6 and Conclusions.

$\overrightarrow{B D}$ bisects $\angle A B C$. Find the value of $x$ and then find the measure of each angle.

1. Write an equation and find the measure of $x$
2. $m \angle A B D=$
$m \angle C B D=$
$\angle A B C=$


Determine whether each statement is always, sometimes, or never true. Give a reason for your answer.

| 3. $m \angle A B C+m \angle C B D=m \angle A B D$ | 4. $\overrightarrow{R T}$ and $\overrightarrow{R S}$ are the same ray |
| :--- | :--- |
| 5. $m \angle A B C$ and $m \angle C A B$ are the same angle. | 6. If E is between D and F , then $\overrightarrow{E D}$ and $\overrightarrow{E F}$ <br> make up $\overrightarrow{D F}$. |

