$$
\begin{gathered}
\text { Algebra 2 } \\
\text { Chapter }{ }^{2} \\
\text { Linear } \\
\text { Relations } \\
\text { and }
\end{gathered}
$$

Functions

Section 2.1 Relations and Functions

PART 1: Relations and Functions

Relation:

Function:
Domain:

Range:
One-to-One Function:

Example 1: State the domain and range of each relation. Then determine whether each relation is a function. If it is a function, determine if it is one-to-one.
1.

2.

3.

\boldsymbol{x}	\boldsymbol{y}
-2	-4
1	-4
4	-2
8	6

Discrete Relation:

Continuous Relation:

Key Concept: Vertical Line Test

Example 2: Use the vertical line test to determine if the following are functions.

Part 2: Equations of Relations and Functions

Independent Variable:

Dependent Variable:

Function Notation:

Example 3: Given $f(x)=3 x^{2}+4$, find each value.

a. $f(6)$	b. $f(5)$	c. $f(7 a)$

Example 4: Use the graph below to answer the following:

a. What is $f(2) ?$	b. Find x so that $f(x)=3$.	c. Is $f(1)>\mathrm{f}(5) ?$

Example 5: Graph each equation and determine the domain and range. Determine whether the equation is a function. If it is a function, determine if it is one-to-one. Then state whether it is discrete or continuous.

Section 2.2 Linear Relations and Functions

PART 1: Linear Relations and Functions

Linear Relation:

Linear Equation:

Linear Function:

Example 1: State whether each function is a linear function. Explain.

a. $f(x)=\frac{x+12}{5}$	b. $f(x)=\frac{7-x}{x}$	c. $f(x)=3 x^{2}-4$	d. $f(x)=-8 x-21$

Example 2: You want to make sure that you have enough music for a car trip. If each CD is an average of 45 minutes long, the linear function $m(x)=.75 x$ could be used to find out how many CDs you need.

a. How many hours of music are there on 4 CDs?	b. If the trip you are taking is 6 hours, how many CDs should you bring?

PART 2: Standard Form

Standard Form of a Linear Equation:

Example 3: Write each equation in standard form. Identify A, B, and C.

a. $3 x=-2 y-1$	b. $-6 y=4 x-24$

x-intercept:

y-intercept:

To find the x-intercept, make \qquad

To find the y-intercept, make \qquad

Example 4: Find the x-intercept and the y-intercept of the graph of each equation. Then graph the equation using the intercepts.

```a. y=5x+12 x - intercept: y - intercept:``` $\qquad$	b. $2 x+3 y=12$   x - intercept: $\qquad$   y - intercept: $\qquad$

## Section 2.3 Rate of Change and Slope

Rate of Change:

Rate of Change $=$ $\qquad$

Example 1: The graph below shows the number of gallons in a swimming pool as it is being filled. At what rate is the pool being filled?


Example 2: Find the rate of change for each set of data.


Slope $=$ $=-$

Example 3: Find the slope that passes through the points.

a. $(1,-3)$ and $(3,5)$	b. $(-8,11$ and $(24,-9)$

Example 4: Find the slope of each line.


Example 5: Determine the rate of change for each equation. Solve for $y$ and find slope.
$10 x+5 y=25$

$$
\frac{1}{4} y=2 x-3
$$

## PART 1: Forms of Equations

Slope-Intercept Form:
To write an equation starting in slope-intercept form:

1. Find the slope of the line.
2. Select a point from the line.
3. Plug in slope $(m)$ and the values of $(x)$ and $(y)$ from the point into $y=m x+b$.
4. Solve for $b$.
5. Rewrite the equation using $m$ and $b$, in the slope-intercept equation $y=m x+b$.

Example 1: Write an equation in slope-intercept form for the line described.

a. slope $\frac{4}{3}$, passes through $(0,4)$	b. passes through $(0,-6)$ and $(-4,10)$

## Point-Slope Form:

To write an equation using point-slope form: $\boldsymbol{y}-\boldsymbol{y}_{\mathbf{1}}=\boldsymbol{m}\left(\boldsymbol{x}-\boldsymbol{x}_{\boldsymbol{1}}\right)$

1. Find the slope of the line.
2. Select a point from the line.
3. Plug in slope for $(m)$ and the value of $(x)$ in for $x_{1}$ and the value of $(y)$ in for $y_{1}$ in the point-slope equation $\boldsymbol{y}-\boldsymbol{y}_{\mathbf{1}}=\boldsymbol{m}\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right)$
4. Rewrite the equation using the form requested in the problem.

Example 2: Use point-slope form to write an equation in slope-intercept form for the line described.
a. slope $\frac{1}{2}$; passes through $(6,5)$
b. passes through $(-2,-1) ; \mathrm{m}=-3$

## PART 2: Parallel and Perpendicular Lines and Standard Form

Parallel Lines:

Perpendicular Lines:

Example 3: Write an equation in slope-intercept form for the line described.
a. passes through ( $-9,-3$ ); perpendicular to $y=-\frac{5}{3} x-8$
b. passes through $(4,-10)$ and parallel to $y=\frac{7}{2} x-3$

## Standard form of a linear equation:

Example 4: Write each linear equation in standard form.
a. $y=2 x+3$
b. $y=-\frac{3}{2} x+4$

## Section 2.5 Scatter Plots and Lines of Regression

## PART 1: Scatter Plots and Prediction Equations

Scatter Plot:

Positive Correlation	Negative Correlation	No Correlation

To Find a Line of Best Fit or $\qquad$ line:
1.
2.
3.

Example 1:

Year born, $x$   (years since 1900)	20	30	40	50	60	70	80	90
Expected years of life, $y$	54	59	63	68	70	71	74	75

a. Make a scatter plot, draw a line of best fit and describe the correlation.

c. If you were born in 1957, how long would you expect to live?
b. Write a predication equation.
d. How accurate does your prediction appear to be?

## PART 2: Regression Line

Regression Line:

Correlation Coefficient, $r$ :

Example 2: The table at the below shows the percent of sales that were made in music stores in the United States for the period 1999-2008. Use a graphing calculator to make a scatter plot of the data. Find and graph a line of regression. Then use the function to predict the percent of sales made in a music store in 2018.

| 1. Enter data in your calculator. |  |
| :---: | :---: | :---: |
| 2. Find the Line of Regression: |  |
| 3. Prediction for 2018: | Music Store Sales  <br> Year Sales <br> (percent) <br> 1999 44.5 <br> 2000 42.4 <br> 2001 42.5 <br> 2002 36.8 <br> 2003 33.2 <br> 2004 32.5 <br> 2005 39.4 <br> 2006 35.4 <br> 2007 31.1 <br> 2008 30.0 |

## Section 2.6 Special Functions

## PART 1: Piecewise-Defined Functions

Piecewise-Defined Function:

## Example 1:

$$
f(x)=\left\{\begin{array}{cc}
x+3 & \text { if } x<-1 \\
-2 x-4 & \text { if } x \geq-1
\end{array}\right.
$$

Domain:
Range:


Evaluate:


## Example 2:

$$
f(x)=\left\{\begin{array}{cc}
-3 & \text { if } x \leq-4 \\
x & \text { if }-4<x<2 \\
-x+6 & \text { if } x \geq 2
\end{array}\right.
$$

Domain:


Range:

Evaluate:

$f(-5)$	$f(2)$	$f(8)$

Absolute Value Function:
Example 3: $f(x)=|x-2|$


## Section 2.7 Parent Functions and Transformations

## PART 1: Parent Graphs



Parent Functions:

Constant Function	Identity Function
Absolute Value Function	

## PART 2: Transformations

Translation:

- $f(x) \pm k$,
- $f(x \pm h)$,

Example 1:
a. $y=a|x-h|+k$

## Reflection:

- when parent function is multiplied by -1 , the result $-f(x)$,
- when only the variable is multiplied by -1 , the result $f(-x)$,


## Example 2:



Dilation :

- When a nonlinear parent function is multiplied by a nonzero number,
- Coefficients greater than 1 cause the graph to be $\qquad$ , and coefficients between 0 and 1 cause the graph to be $\qquad$ .


## Example 3:



## PART 1: Graph Linear Inequalities

Linear Inequality:

To Graph a Linear Inequality:
1.
2.
3.

Example 1: Graph the following linear inequalities.


## Example 2:

Manual has $\$ 15$ to spend at the county fair. The fair costs $\$ 5$ for admission, $\$ 0.75$ for each ride ticket, and $\$ 0.25$ for each game ticket. Write an inequality and draw a graph that represent the number of ride tickets and game tickets that Manual can buy.


## PART 2: Graph Absolute Value Inequalities

## Write in the form of $y=a|x-h|+k$, before graphing an absolute value function

Example 3: Graph the following linear inequalities.


