Algebra 2 Chapter 2

Linear Relations and Functions

Section 2.1 Relations and Functions

PART 1: Relations and Functions

Relation:

Function:

Domain:

Range:

One-to-One Function:

Example 1: State the domain and range of each relation. Then determine whether each relation is a function. If it is a function, determine if it is *one-to-one*.

Discrete Relation:

Continuous Relation:

Key Concept: Vertical Line Test

Example 2: Use the vertical line test to determine if the following are functions.

Part 2: Equations of Relations and Functions

Independent Variable:

Dependent Variable:

Function Notation:

Example 3: Given $f(x) = 3x^2 + 4$, find each value.

a. $f(6)$	b. f(5)	c. <i>f</i> (7 <i>a</i>)

Example 4: Use the graph below to answer the following:

a. What is <i>f</i> (2)?	b. Find x so that $f(x) = 3$.	c. Is $f(1) > f(5)$?

Example 5: Graph each equation and determine the domain and range. Determine whether the equation is a function. If it is a function, determine if it is *one-to-one*. Then state whether it is *discrete* or *continuous*.

Section 2.2 Linear Relations and Functions

PART 1: Linear Relations and Functions

Linear Relation:

Linear Equation:

Linear Function:

Example 1: State whether each function is a linear function. Explain.

a. $f(x) = \frac{x+12}{5}$	b. $f(x) = \frac{7-x}{x}$	c. $f(x) = 3x^2 - 4$	d. $f(x) = -8x - 21$

Example 2: You want to make sure that you have enough music for a car trip. If each CD is an average of 45 minutes long, the linear function m(x) = .75x could be used to find out how many CDs you need.

w many

PART 2: Standard Form

Standard Form of a Linear Equation:

Example 3: Write each equation in standard form. Identify *A*, *B*, and *C*.

a. $3x = -2y - 1$	b. $-6y = 4x - 24$

x-intercept:

y-intercept:

To find the *x*-intercept, make ______

To find the *y*-intercept, make _____

Example 4: Find the *x*-intercept and the *y*-intercept of the graph of each equation. Then graph the equation using the intercepts.

a. y = 5x + 12	b. $2x + 3y = 12$
x - intercept:	x - intercept:
y - intercept:	y - intercept:

Section 2.3 Rate of Change and Slope

Rate of Change:

Rate of Change = _____

Example 1: The graph below shows the number of gallons in a swimming pool as it is being filled. At what rate is the pool being filled?

Example 2: Find the rate of change for each set of data.

a.				0			_	b.							
	Time (min)	2	4	6	8	10			Time (sec)	5	10	15	20	25	
	Distance (ft)	12	24	36	48	60			Volume (cm ³)	16	32	48	64	80	
							_								

Slope =_____ = ____

Example 3: Find the slope that passes through the points.

a. (1, -3) and (3, 5)	•	L C	~ *	b. (-8, 11 and (24, -9)

Example 4: Find the slope of each line.

10x + 5y = 25	$\frac{1}{4}y = 2x - 3$

Section 2.4 Writing Linear Equations

PART 1: Forms of Equations

Slope-Intercept Form:

To write an equation starting in **slope-intercept form**:

- 1. Find the slope of the line.
- 2. Select a point from the line.
- 3. Plug in slope (*m*) and the values of (*x*) and (*y*) from the point into y = mx + b.
- 4. Solve for *b*.
- 5. Rewrite the equation using *m* and *b*, in the slope-intercept equation y = mx + b.

Example 1: Write an equation in slope-intercept form for the line described.

a. slope $\frac{4}{3}$, passes through (0, 4)	b. passes through (0, -6) and (-4, 10)

Point-Slope Form:

To write an equation using **point-slope form**: $y - y_1 = m(x - x_1)$

- 1. Find the slope of the line.
- 2. Select a point from the line.
- 3. Plug in slope for (*m*) and the value of (*x*) in for x_1 and the value of (*y*) in for y_1 in the point-slope equation $y y_1 = m(x x_1)$
- 5. Rewrite the equation using the form requested in the problem.

Example 2: Use point-slope form to write an equation in slope-intercept form for the line described.

a. slope $\frac{1}{2}$; passes through (6, 5)	b. passes through (-2, -1); m = -3

PART 2: Parallel and Perpendicular Lines and Standard Form

Parallel Lines:

Perpendicular Lines:

Example 3: Write an equation in slope-intercept form for the line described.

a. passes through (-9, -3); perpendicular to $y = -\frac{5}{3}x - 8$

b. passes through (4, -10) and parallel to $y = \frac{7}{2}x - 3$

Standard form of a linear equation:

a. y = 2x + 3	b. $y = -\frac{3}{2}x + 4$	

Section 2.5 Scatter Plots and Lines of Regression

PART 1: Scatter Plots and Prediction Equations

Scatter Plot:

Positive Correlation	Negative Correlation	No Correlation

To Find a Line of Best Fit or _____line:

1.

2.

3.

Example 1:

Year born, <i>x</i> (years since 1900)	20	30	40	50	60	70	80	90
Expected years of life, y	54	59	63	68	70	71	74	75

a. Make a scatter plot, draw a line of best fit and describe the correlation.	b. Write a predication equation.
c. If you were born in 1957, how long would you expect to live?	d. How accurate does your prediction appear to be?

PART 2: Regression Line

Regression Line:

Correlation Coefficient, *r* :

Example 2: The table at the below shows the percent of sales that were made in music stores in the United States for the period 1999-2008. Use a graphing calculator to make a scatter plot of the data. Find and graph a line of regression. Then use the function to predict the percent of sales made in a music store in 2018.

1. Enter data in your calculator.	Music Store Sales	
2. Find the Line of Regression:	Year	Sales (percent)
	1999	44.5
3. Prediction for 2018:	2000	42.4
	2001	42.5
	2002	36.8
	2003	33.2
	2004	32.5
	2005	39.4
	2006	35.4
	2007	31.1
	2008	30.0

Section 2.6 Special Functions

f(-1)

PART 1: Piecewise-Defined Functions

Piecewise-Defined Function:

Example 1:

$$f(x) = \begin{cases} x+3 & \text{if } x < -1 \\ -2x-4 & \text{if } x \ge -1 \end{cases}$$

Domain:

Range:

Evaluate: f(-5)

Example 2:

$$f(x) = \begin{cases} -3 & \text{if } x \le -4 \\ x & \text{if } -4 < x < 2 \\ -x + 6 & \text{if } x \ge 2 \end{cases}$$

Domain:

Range:

Evaluate:

f(-5)	<i>f</i> (2)	<i>f</i> (8)

PART 2: Absolute Value Functions

Absolute Value Function:

Example 3:
$$f(x) = |x-2|$$

Section 2.7 Parent Functions and Transformations

PART 1: Parent Graphs

Parent Functions:

Constant Function	Identity Function
Absolute Value Function	Quadratic Function

PART 2: Transformations

Translation:

- $f(x) \pm k$,
- $f(x \pm h)$,

Example 1:

Reflection:

- when parent function is multiplied by -1, the result -f(x),
- when only the variable is multiplied by -1, the result *f*(-*x*),

Dilation :

- When a nonlinear parent function is multiplied by a nonzero number,
- Coefficients greater than 1 cause the graph to be ______, and coefficients between 0 and 1 cause the graph to be ______.

Section 2.8 Graphing Linear and Absolute Value Inequalities

PART 1: Graph Linear Inequalities

Linear Inequality:

To Graph a Linear Inequality:

1.

2.

3.

Example 1: Graph the following linear inequalities.

Example 2:

Manual has \$15 to spend at the county fair. The fair costs \$5 for admission, \$0.75 for each ride ticket, and \$0.25 for each game ticket. Write an inequality and draw a graph that represent the number of ride tickets and game tickets that Manual can buy.

PART 2: Graph Absolute Value Inequalities

Write in the form of y = a |x - h| + k, before graphing an absolute value function

