Fill complete each statement and then use a core vocabulary term that is defined by the statement.

Name: _____

Word bank					
biconditional statement		deductive reasoning		observations	conjecture
hypothesis	inductive reasonin	g	facts	counterexample	conclusion
negation	If-then form		converse	$q \rightarrow p$	$\sim p \rightarrow \sim q$
logical	If <i>p</i> , then <i>q</i>		exchanged	$p \rightarrow q$	$\sim q \rightarrow \sim p$
negate	contrapositive		inverse	conditional statem	ent

Definition	Vocabulary term
1. A statement that has two parts, a <i>p</i> , and a	
<i>q</i> .	
In words and with symbols	
2. A related conditional statement in which the hypothesis and the conclusion are	
In words: If <u>q, then p.</u> and with symbols	
3. A related conditional statement in which the hypothesis and the conclusion are negated.	
In words: If <u>not <i>p</i>, then not <i>q</i>.</u> and with symbols	
4. A related conditional statement in which first write the Then, both the hypothesis and the conclusion.	
In words: If <u>not <i>q</i>, then not <i>p</i>.</u> and with symbols	
5. When the and its are both true, you can write "it as <i>p</i> if and only if <i>q</i> ."	
6. Unproven statement based on	
7. Reasoning based on patterns and	
8. Reasoning based on, definitions, accepted properties and the laws of logic.	
9. Specific cases for which a statement is proven false.	

Describe the pattern. Then write or draw the next two numbers or figures.1. 3, 5, 9, 15, 23Describe:Next twoNumbers:

2.	\Diamond	\Diamond	$\sim \sim \sim \sim$	Describe:	Next two
	1st	2nd	3rd	Figures:	

p. 90	
1. Write:	2. Write:
Hypothesis, <i>p</i> :	Hypothesis, <i>p</i> :
Conclusion, <i>q</i> :	Conclusion, <i>q</i> :
a. the conditional statement $p \rightarrow q$	a. the conditional statement $p \rightarrow q$
b. the converse $q \rightarrow p$	b. the converse $q \rightarrow p$
c. the inverse $\sim p \rightarrow \sim q$	c. the inverse $\sim n \rightarrow \sim q$
d. the contrapositive $\sim q \rightarrow \sim p$	d. the contrapositive $\sim q \rightarrow \sim p$

4.	5.

8.	9.		10.
11.		12.	

14. a.	
14. b.	

Use the diagram to write an example of each of the given postulate.

A. Two Point	
Postulate	
B. Line-Point	
Postulate	
C. Plane-point	
Postulate	
D. Plane-Line	
Postulate	
E. Three Point	
Postulate	

Decide whether <u>inductive</u> reasoning or <u>deductive</u> reasoning is used to reach the conclusion.

F. Every time you study for at least 1 hour for a quiz, you earn an A on the Quiz. So, yesterday, you studied for 90 minutes, and you assume that you will get an A on this quiz.

G. In an isosceles triangle, the base angles are congruent. The angles of $\triangle ABC$ and $\angle A = 40^{\circ}, \angle B = 40^{\circ}, \angle C = 100^{\circ}$. Therefore, $\triangle ABC$ is an isosceles triangle.

Use the Law of Detachment to determine what you can conclude from the given information, if possible.

I.	If Chris is a sophomore, he takes English II.
	Chris is a sophomore.
	Conclusion:

Use the Law of Syllogism to draw a conclusion to write a new conditional statement that follows from the pair statements.

- J. If I pass geometry, I won't have to go to summer school.
 - If I don't go to summer school, I'll get a job.
 - If I get a job, I'll make money.
 - Conclusion: