$\qquad$

## 2.1-2.3 Review bookwork

## Fill complete each statement and then use a core vocabulary term that is defined by the statement.

Word bank

| biconditional statement |  | deductive reasoning | observations | conjecture |
| :--- | :--- | :--- | :--- | :--- |
| hypothesis | inductive <br> reasoning | facts | counterexample | conclusion |
| negation | If-then form | converse | $\mathrm{q} \rightarrow \mathrm{p}$ | $\sim \mathrm{p} \rightarrow \sim \mathrm{q}$ |
| logical | If $p$, then $q$ | exchanged | $\mathrm{p} \rightarrow \mathrm{q}$ | $\sim \mathrm{q} \rightarrow \sim \mathrm{p}$ |
| negate | contrapositive | inverse | conditional statement |  |


| Definition | Vocabulary term |
| :---: | :---: |
| 1. A $\qquad$ statement that has two parts, a $\qquad$ $p$, and a $\qquad$ $q$. <br> In words $\qquad$ and with symbols $\qquad$ |  |
| 2. A related conditional statement in which the hypothesis and the conclusion are $\qquad$ <br> In words: If $q$, then $p$. and with symbols $\qquad$ |  |
| 3. A related conditional statement in which the hypothesis and the conclusion are negated. <br> In words: If not $p$, then not $q$.__ and with symbols $\qquad$ |  |
| 4. A related conditional statement in which first write the $\qquad$ Then, $\qquad$ both the hypothesis and the conclusion. <br> In words: If $\qquad$ ot $q$, then not $p$ and with symbols $\qquad$ |  |
| 5. When the $\qquad$ and its $\qquad$ are both true, you can write "it as $p$ if and only if $q$." |  |
| 6. Unproven statement based on |  |
| 7. Reasoning based on patterns and ___. |  |
| 8. Reasoning based on $\qquad$ definitions, accepted properties and the laws of logic. |  |
| 9. Specific cases for which a statement is proven false. |  |

Describe the pattern. Then write or draw the next two numbers or figures.

1. $3,5,9,15,23$

Describe:
Next two Numbers:
2.

Describe:
Next two
Figures:
p. 90

| 1. Write: Hypothesis, $p$ : <br> Conclusion, $q$ : | 2. Write: Hypothesis, $p$ : Conclusion, $q$ : |
| :---: | :---: |
| a. the conditional statement $p \rightarrow q$ | a. the conditional statement $p \rightarrow q$ |
| b. the converse $q \rightarrow p$ | b. the converse $q \rightarrow p$ |
| c. the inverse $\sim p \rightarrow \sim q$ | c. the inverse $\sim p \rightarrow \sim q$ |
| d. the contrapositive $\sim q \rightarrow \sim p$ | d. the contrapositive $\sim q \rightarrow \sim p$ |


| 4. | 5. |
| :--- | :--- |


| 8. | 9. | 10. |
| :--- | :--- | :--- | :--- |
| 11. | 12. |  |

14. a.
15. b.

Use the diagram to write an example of each of the given postulate.


| A. Two Point |  |
| :--- | :--- |
| Postulate |  |
| B. Line-Point |  |
| Postulate |  |
| C. Plane-point |  |
| Postulate |  |
| D. Plane-Line |  |
| Postulate |  |
| E. Three Point <br> Postulate |  |

Decide whether inductive reasoning or deductive reasoning is used to reach the conclusion.
F. Every time you study for at least 1 hour for a quiz, you earn an A on the Quiz. So, yesterday, you studied for 90 minutes, and you assume that you will get an A on this quiz.
G. In an isosceles triangle, the base angles are congruent. The angles of $\triangle A B C$ and $\angle A=40^{\circ}, \angle B=40^{\circ}, \angle C=100^{\circ}$. Therefore, $\triangle A B C$ is an isosceles triangle.

Use the Law of Detachment to determine what you can conclude from the given information, if possible.
H. If $<1$ and $<2$ are vertical angles, then they are equal.
$<1$ and <2 are equal.
Conclusion: $\qquad$
I. If Chris is a sophomore, he takes English II.

Chris is a sophomore.
Conclusion:
Use the Law of Syllogism to draw a conclusion to write a new conditional statement that follows from the pair statements.
J. If I pass geometry, I won't have to go to summer school.

If I don't go to summer school, l'll get a job.
If I get a job, I'll make money.
Conclusion: $\qquad$

